EXERCISE 9.1 [PAGE 120]

Exercise 9.1 | Q 1.1 | Page 120

Find the derivative of the following function w.r.t. x. $x^{12} \label{eq:relation}$

SOLUTION

Let $y = x^{12}$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx}x^{12}$$
$$= 12 x^{12-1}$$

 $= 12 x^{11}$

Exercise 9.1 | Q 1.2 | Page 120 Find the derivative of the following function w.r.t. x. x^{-9}

SOLUTION

Let $y = x^{-9}$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx}x^{-9}$$
$$= -9 \times e^{-9}$$
$$= -9 \times e^{-10}$$

Exercise 9.1 | Q 1.3 | Page 120

Find the derivative of the following functions w. r. t. x. $x^{rac{3}{2}}$

SOLUTION

Let y = $x^{\frac{3}{2}}$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx}x^{\frac{3}{2}}$$
$$= \frac{3}{2}x^{\frac{3}{2}-1}$$
$$= -\frac{3}{2}x^{\frac{1}{2}}$$
$$= \frac{3}{2}\sqrt{x}$$

Exercise 9.1 | Q 1.4 | Page 120

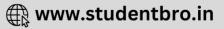
Find the derivative of the following function w. r. t. x.

 $7x\sqrt{x}$

SOLUTION

Let
$$y = 7x\sqrt{x}$$

 $=7x^{1}x^{\frac{1}{2}}$
 $y = 7x^{\frac{3}{2}}$
Differentiating w.r.t. x, we get
 $\frac{dy}{dx} = \frac{d}{dx}7x^{\frac{3}{2}}$
 $= 7 \times \frac{3}{2}x^{\frac{3}{2}-1}$



$$=\frac{21}{2}x^{\frac{1}{2}}$$
$$=\frac{21}{2}\sqrt{x}$$

Exercise 9.1 | Q 1.5 | Page 120

Find the derivative of the following function w. r. t. x. 3^5

SOLUTION

Let $y = 3^5$

Differentiating w.r.t. x, we get

 $rac{dy}{dx}=rac{d}{dx}3^5=0$...[3^5 is a constant]

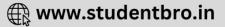
Exercise 9.1 | Q 2.1 | Page 120 Differentiate the following w. r. t. x. $x^5 + 3x^4$

SOLUTION

Let
$$y = x^5 + 3x^4$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^5 + 3x^4\right)$$
$$= \frac{d}{dx} x^5 + 3\frac{d}{dx} x^4$$
$$= 5x^4 + 3(4x^3)$$
$$\frac{dy}{dx} = 5x^4 12x^3$$



Exercise 9.1 | Q 2.2 | Page 120

Differentiate the following w. r. t. x.

 $x\sqrt{x} + \log x - e^x$

SOLUTION

Let y =
$$x\sqrt{x} + \log x - e^x$$

= $x\frac{3}{2} + \log x - e^x$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^{\frac{3}{2}} + \log x - e^x \right)$$
$$= \frac{d}{dx} x^{\frac{3}{2}} + \frac{d}{dx} \log x - \frac{d}{dx} e^x$$
$$= \frac{3}{2} x^{\frac{3}{2} - 1} + \frac{1}{x} - e^x$$
$$= \frac{3}{2} x^{\frac{1}{2}} + \frac{1}{x} - e^x$$
$$= \frac{3}{2} \sqrt{x} + \frac{1}{x} - e^x$$

Exercise 9.1 | Q 2.3 | Page 120

Differentiate the following w. r. t. x. $x^{\frac{5}{2}} + 5x^{\frac{7}{5}}$

Let y = $x^{rac{5}{2}}+5x^{rac{7}{5}}$

Differentiating w.r.t. x, we get

$$=\frac{dy}{dx}=\frac{d}{dx}\left(x^{\frac{5}{2}}+5x^{\frac{7}{5}}\right)$$

$$= \frac{d}{dx}x^{\frac{5}{2}} + 5\frac{d}{dx}x^{\frac{7}{5}}$$
$$= \frac{5}{2}x^{\frac{5}{2}-1} + 5\frac{7}{5}x^{\frac{7}{5}-1}$$
$$= \frac{5}{2}x^{\frac{3}{2}} + 7x^{\frac{2}{5}}$$

Exercise 9.1 | Q 2.4 | Page 120

Differentiate the following w. r. t. x.

$$\frac{2}{7}x^{\frac{7}{2}} + \frac{5}{2}x^{\frac{2}{5}}$$

SOLUTION

Let y =
$$\frac{2}{7}x^{\frac{7}{2}} + \frac{5}{2}x^{\frac{2}{5}}$$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(\frac{2}{7} x^{\frac{7}{2}} + \frac{5}{2} x^{\frac{2}{5}} \right) \\ &= \frac{2}{7} \frac{d}{dx} x^{\frac{7}{2}} + \frac{5}{2} \frac{d}{dx} x^{\frac{2}{5}} \\ &= \frac{2}{7} \times \frac{7}{2} x^{\frac{7}{2}-1} + \frac{5}{2} \times \frac{2}{5} x^{\frac{2}{5}-1} \\ &= x^{\frac{5}{2}} + x^{\frac{-3}{5}} \end{aligned}$$

Exercise 9.1 | Q 2.5 | Page 120 Differentiate the following w. r. t. x. $\sqrt{x} (x^2 + 1)^2$

SOLUTION

Let y =
$$\sqrt{x}(x^2 + 1)^2$$

 $\therefore y = x^{\frac{1}{2}}(x^4 + 2x^2 + 1)$
y = $x^{\frac{9}{2}} + 2x^{\frac{5}{2}} + x^{\frac{1}{2}}$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(x^{\frac{9}{2}} + 2x^{\frac{5}{2}} + x^{\frac{1}{2}} \right) \\ &= \frac{d}{dx^{\frac{9}{2}}} + 2\frac{d}{dx}x^{\frac{5}{2}} + \frac{d}{dx}\sqrt{x} \\ &= \frac{9}{2}x^{\frac{9}{2}-1} + 2 \times \frac{5}{2}x^{\frac{5}{2}-1} + \frac{1}{2\sqrt{x}} \\ &= \frac{9}{2}\frac{x^7}{2} + 5\frac{x^3}{2} + \frac{1}{2\sqrt{x}} \end{aligned}$$

Exercise 9.1 | Q 3.1 | Page 120

Differentiate the following w. r. t. x $x^3 \log x$

SOLUTION

Let $y = (x^3 \log x)$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx}x^3 \log x$$
$$= x^3 \frac{d}{dx}(\log x) + (\log x)\frac{d}{dx}(x^3)$$
$$= x^3 \times \frac{1}{x} + (\log x)(3x^2)$$
$$= x^2 + 3x^2 \log x$$

Exercise 9.1 | Q 3.2 | Page 120

Differentiate the following w. r. t. x $x^{\frac{5}{2}}e^{x}$

SOLUTION

Let y =
$$x^{\frac{5}{2}}e^x$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^{\frac{5}{2}} e^x \right)$$
$$= x^{\frac{5}{2}} \frac{d}{dx} (e^x) + e^x \left(\frac{5}{2} x^{\frac{3}{2}} \right)$$
$$= x^{\frac{5}{2}} (e^x) + e^x \left(\frac{5}{2} x^{\frac{3}{2}} \right)$$
$$= e^x \left(x^{\frac{5}{2}} + \frac{5}{2} x^{\frac{3}{2}} \right)$$

Exercise 9.1 | Q 3.3 | Page 120

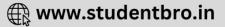
Differentiate the following w.r.t. x $e^x \log x$

SOLUTION

Let $y = e^x \log x$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} (e^x \log x)$$
$$= e^x \frac{d}{dx} (\log x) + (\log x) \frac{d}{dx} (e^x)$$



$$=e^{x}\left(\frac{1}{x}\right) + (\log x)(e^{x})$$
$$=e^{x}\left(\frac{1}{x} + \log x\right)$$

Exercise 9.1 | Q 3.4 | Page 120

Differentiate the following w. r. t. x $x^3 . 3^x$

SOLUTION

Let $y = x^3 3^x$

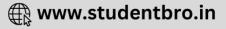
Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} (x^3 3^x)$$
$$= x^3 \frac{d}{dx} (3^x) + 3^x \frac{d}{dx} (x^3)$$
$$= (x^3)(3^x \log 3) + 3^x (3x^2)$$
$$= x^2 3^x (x \log 3 + 3)$$

Exercise 9.1 | Q 4.1 | Page 120

Find the derivative of the following w. r. t.x

 $\frac{x^2+a^2}{x^2-a^2}$



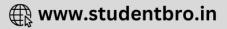
Let y = $rac{x^2+a^2}{x^2-a^2}$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(\frac{x^2 + a^2}{x^2 - a^2} \right) \\ &= \frac{\left(x^2 - a^2 \right) \frac{d}{dx} \left(x^2 + a^2 \right) - \left(x^2 + a^2 \right) \frac{d}{dx} \left(x^2 - a^2 \right)}{\left(x^2 - a^2 \right)^2} \\ &= \frac{\left(x^2 - a^2 \right) \left(\frac{d}{dx} x^2 + \frac{d}{dx} a^2 \right) - \left(x^2 + a^2 \right) \left(\frac{d}{dx} x^2 - \frac{d}{dx} a^2 \right)}{\left(x^2 - a^2 \right)^2} \\ &= \frac{\left(x^2 - a^2 \right) \left(2x + 0 \right) - \left(x^2 + a^2 \right) \left(2x - 0 \right)}{\left(x^2 - a^2 \right)^2} \\ &= \frac{2x \left(x^2 - a^2 \right) - 2x \left(x^2 + a^2 \right)}{\left(x^2 - a^2 \right)^2} \\ &= \frac{2x \left(x^2 - a^2 - x^2 - a^2 \right)}{\left(x^2 - a^2 \right)^2} \\ &= \frac{2x \left(-2a^2 \right)}{\left(x^2 - a^2 \right)^2} \\ &= \frac{-4xa^2}{\left(x^2 - a^2 \right)^2} \end{aligned}$$

Exercise 9.1 | Q 4.2 | Page 120

Find the derivative of the following w. r. t.x. $\frac{3x^2+5}{2x^2-4}$



Let y = $rac{3x^2+5}{2x^2-4}$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(\frac{3x^2 + 5}{2x^2 - 4} \right) \\ &= \frac{(2x^2 - 4)\frac{d}{dx}(3x^2 + 5) - (3x^2 + 5)\frac{d}{dx}(2x^2 - 4)}{(2x^2 - 4)^2} \\ &= \frac{(2x^2 - 4)(6x + 0) - (3x^2 + 5)(4x - 0)}{(2x^2 - 4)^2} \\ &= \frac{6x(2x^2 - 4) - 4x(3x^2 + 5)}{(2x^2 - 4)^2} \\ &= \frac{2x[3(2x^2 - 4) - 2(3x^2 + 5)]}{(2x^2 - 4)^2} \\ &= \frac{2x(6x^2 - 12 - 6x^2 - 10)}{(2x^2 - 4)^2} \\ &= \frac{2x(-22)}{(2x^2 - 4)^2} \\ &= \frac{-44x}{(2x^2 - 4)^2} \end{aligned}$$

Exercise 9.1 | Q 4.3 | Page 120

Find the derivative of the following w. r. t. x $\log x$

 $\frac{\log x}{x^3-5}$

SOLUTION

Let y =
$$\frac{\log x}{x^3 - 5}$$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(\frac{\log x}{x^3 - 5} \right) \\ &= \frac{\left(x^3 - 5 \right) \frac{d}{dx} (\log x) - (\log x) \frac{d}{dx} \left(x^3 - 5 \right)}{\left(x^3 - 5 \right)^2} \\ &= \frac{\left(x^3 - 5 \right) \left(\frac{1}{x} \right) - \log x \left(\frac{d}{dx} \left(x^3 \right) - \frac{d}{dx} \left(5 \right) \right)}{\left(x^3 - 5 \right)^2} \\ &= \frac{\left(x^3 - 5 \right) \frac{1}{x} - \log x \left(3x^2 - 0 \right)}{\left(x^3 - 5 \right)^2} \\ &= \frac{\left(x^3 - 5 \right) \frac{1}{x} - 3x^2 \log x}{\left(x^2 - 5 \right)^2} \end{aligned}$$

Exercise 9.1 | Q 4.4 | Page 120

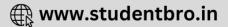
Find the derivative of the following w. r. t.x. $\frac{3e^x - 2}{3e^x + 2}$

SOLUTION

Let y =
$$rac{3e^x-2}{3e^x+2}$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{3e^x - 2}{3e^x + 2} \right)$$
$$= \frac{(3e^x + 2)\frac{d}{dx}(3e^x - 2) - (3e^x - 2)\frac{d}{dx}(3e^x + 2)}{(3e^x + 2)^2}$$



$$= \frac{(3e^{x})(\frac{d}{dx}(3e^{x}) - \frac{d}{dx}(2)) - (3e^{x} - 2)(\frac{d}{dx}(3e^{x}) + \frac{d}{dx}(2))}{(3e^{x} + 2)^{2}}$$

$$= \frac{(3e^{x} + 2)(3e^{x} - 0) - (3e^{x} - 2)(3e^{x} + 0)}{(3e^{x} + 2)^{2}}$$

$$= \frac{3e^{x}(3e^{x} + 2) - 3e^{x}(3e^{x} - 2)}{(3e^{x} + 2)^{2}}$$

$$= \frac{3e^{x}(3e^{x} + 2 - 3e^{x} + 2)}{(3e^{x} + 2)^{2}}$$

$$= \frac{3e^{x}(4)}{(3e^{x} + 2)^{2}}$$

$$= \frac{12e^{x}}{(3e^{x} + 2)^{2}}$$

Exercise 9.1 | Q 4.5 | Page 120

Find the derivative of the following w.r.t.x.

 $\frac{xe^x}{x+e^x}$

SOLUTION

Let y =
$$\frac{xe^x}{x+e^x}$$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(\frac{xe^x}{x + e^x} \right) \\ &= \frac{(x + e^x) \frac{d}{dx} (xe^x) - (xe^x) \frac{d}{dx} (x + e^x)}{(x + e^x)^2} \\ &= \frac{(x + e^x) \left[x \frac{d}{dx} (e^x) + e^x \frac{d}{dx} (x) \right] - xe^x \left(\frac{d}{dx} (x) + \frac{d}{dx} (e^x) \right)}{(x + e^x)^2} \end{aligned}$$

Get More Learning Materials Here : 📕

Regional www.studentbro.in

$$= \frac{(x+e^{x})[xe^{x}+e^{x}(1)] - xe^{x}(1+e^{x})}{(x+e^{x})^{2}}$$

$$= \frac{(x+e^{x})(xe^{x}+e^{x}) - xe^{x}(1+e^{x})}{(x+e^{x})^{2}}$$

$$= \frac{(x+e^{x})e^{x}(x+1) - xe^{x}(1+e^{x})}{(x+e^{x})^{2}}$$

$$= \frac{e^{x}[(x+e^{x})(x+1) - x(1+e^{x})]}{(x+e^{x})^{2}}$$

Exercise 9.1 | Q 5.1 | Page 120

Find the derivative of the following function by the first principle. $3x^2 + 4$

SOLUTION

Let
$$f(x) = 3x^2 + 4$$

 $\therefore f(x + h) = 3(x + h)^2 + 4$
 $= 3(x^2 + 2xh + h^2) + 4$
 $= 3x^2 + 6xh + 3h^2 + 4$
By first principle, we get
 $f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{(3x^2 + 6xh + 3h^2 + 4) - (3x^2 + 4)}{h}$
 $= \lim_{h \to 0} \frac{3h^2 + 6xh}{h}$
 $= \lim_{h \to 0} \frac{h(3h + 6x)}{h}$

Get More Learning Materials Here :

$$=\lim_{h\to 0} (6x + 3h) \quad \dots [\because h \to 0, \therefore h \neq 0]$$
$$= 6x + 3(0)$$
$$= 6x$$

Exercise 9.1 | Q 5.2 | Page 120

Find the derivative of the following function by the first principle. $x\sqrt{x}$

SOLUTION

Let $f(x) = x\sqrt{x} = x^{\frac{3}{2}}$ $\therefore f(x + h) = (x + h)^{\frac{3}{2}}$ By first principle, we get $f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{(x + h)^{\frac{3}{2}} - x^{\frac{3}{2}}}{h}$ $= \lim_{h \to 0} \frac{\left[(x + h)^{\frac{3}{2}} - x^{\frac{3}{2}}\right]\left[(x + h)^{\frac{3}{2}} + x^{\frac{3}{2}}\right]}{h\left[(x + h)^{\frac{3}{2}} + x^{\frac{3}{2}}\right]}$ $= \lim_{h \to 0} \frac{(x + h)^3 - x^3}{h\left[(x + h)^{\frac{3}{2}} + x^{\frac{3}{2}}\right]}$ $= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h\left[(x + h)^{\frac{3}{2}} + x^{\frac{3}{2}}\right]}$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h\left[(x+h)^{\frac{3}{2} + x^{\frac{3}{2}}}\right]}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h\left[(x+h)^{\frac{3}{2}} + x^{\frac{3}{2}}\right]}$$

$$= \lim_{h \to 0} \frac{3x^2 + 3xh + h^2}{(x+h)^{\frac{3}{2}} + x^{\frac{3}{2}}} \dots [\because h \to 0, \therefore h \neq 0]$$

$$= \frac{3x^2 + 3 \times x0 + 0^2}{(x+0)^{\frac{3}{2}} + x^{\frac{3}{2}}}$$

$$= \frac{3x^2}{2x^{\frac{3}{2}}}$$

$$= \frac{3}{2}x^{\frac{1}{2}}$$

$$= \frac{3}{2}\sqrt{x}$$

Exercise 9.1 | Q 5.3 | Page 120

Find the derivative of the following functions by the first principle.

 $\frac{1}{2x+3}$

SOLUTION

Let
$$f(x) = \frac{1}{2x+3}$$

 $\therefore f(x + h) = \frac{1}{2(x+h)+3} = \frac{1}{2x+2h+3}$

By first principle, we get

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\left(\frac{1}{2x+2h+3}\right) - \left(\frac{1}{2x+3}\right)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{2x+3-2x-2h-3}{(2x+2h+3)(2x+3)}\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{-2h}{(2x+2h+3)(2x+3)}$$

$$= \lim_{h \to 0} \frac{-2}{(2x+2h+3)(2x+3)} \dots [\because h \to 0, \therefore h \neq 0]$$

$$= \frac{-2}{(2x+2\times 0+3)(2x+3)}$$

$$= \frac{-2}{(2x+3)^2}$$

Exercise 9.1 | Q 5.4 | Page 120

Find the derivative of the following function by the first principle.

$$rac{x-1}{2x+7}$$

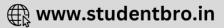
SOLUTION

Let
$$f(x) = \frac{x-1}{2x+7}$$

 $\therefore f(x + h) = \frac{x+h-1}{2(x+h)+7} = \frac{x+h-1}{2x+2h+7}$

By first principle, we get

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$



$$\begin{split} &= \lim_{h \to 0} \frac{\frac{x+h+1}{2x+2h+7} - \frac{x-1}{2x+7}}{h} \\ &= \lim_{h \to 0} \frac{1}{h} \left[\frac{(x+h-1)(2x+7) - (x-1)(2x+2h+7)}{(2x+2h+7)(2x+7)} \right] \\ &= \lim_{h \to 0} \frac{1}{h} \left[\frac{(2x^2+2xh-2x+7x+7h-7-2x^2-2xh-7x+2x+2h+7)}{(2x+2h+7)(2x+7)} \right] \\ &= \lim_{h \to 0} \frac{1}{h} \left[\frac{9h}{(2x+2h+7)(2x+7)} \right] \\ &= \frac{9}{(2x+2\times0+7)(2x+7)} \\ &= \frac{9}{(2x+2\times0+7)(2x+7)} \end{split}$$

EXERCISE 9.2 [PAGES 122 - 123]

Exercise 9.2 | Q 1.1 | Page 122

Differentiate the following function w.r.t.x.

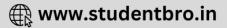
 $\frac{x}{x+1}$

SOLUTION

Let y =
$$rac{x}{x+1}$$

Differentiating w.r.t. x, we get

$$egin{aligned} &rac{dy}{dx} = rac{d}{dx}igg(rac{x}{x+1}igg) \ &= rac{(x+1)rac{d}{dx}(x) - xrac{d}{dx}(x+1)}{(x+1)^2} \end{aligned}$$



$$= \frac{(x+1)(1) - x(1+0)}{(x+1)^2}$$
$$= \frac{x+1-x}{(x+1)^2}$$
$$= \frac{1}{(x+1)^2}$$

Exercise 9.2 | Q 1.2 | Page 122

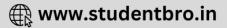
Differentiate the following function w.r.t.x $\frac{x^2+1}{x}$

SOLUTION

Let y = $rac{x^2+1}{x}$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(\frac{x^2 + 1}{x} \right) \\ &= \frac{x \frac{d}{dx} \left(x^2 + 1 \right) - \left(x^2 + 1 \right) \frac{d}{dx} (x)}{x^2} \\ &= \frac{x (2x + 0) - \left(x^2 + 1 \right) (1)}{x^2} \\ &= \frac{2x^2 - x^2 - 1}{x^2} \\ \frac{dy}{dx} &= \frac{x^2 - 1}{x^2} \end{aligned}$$



Exercise 9.2 | Q 1.3 | Page 122

Differentiate the following function w.r.t.x.

 $\frac{1}{e^x+1}$

SOLUTION

Let
$$y = \frac{1}{e^x + 1}$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{1}{e^x + 1}\right)$$

$$= \frac{(e^x + 1)\frac{d}{dx}(1) - (1)\frac{d}{dx}(e^x + 1)}{(e^x + 1)^2}$$

$$= \frac{(e^x + 1)(0) - (1)(e^x + 0)}{(e^x + 1)^2}$$

$$= \frac{e^x + 1 - e^x}{(e^x + 1)^2}$$

$$= \frac{1}{(e^x + 1)^2}$$

Exercise 9.2 | Q 1.4 | Page 122

Differentiate the following function w.r.t.x

 $\frac{e^x}{e^x+1}$

$$\mathsf{y} = \frac{e^x}{e^x + 1}$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{e^x}{e^x + 1}\right)$$

$$= \frac{(e^x + 1)\frac{d}{dx}(e^x) - \frac{d}{dx}(e^x + 1)}{(e^x + 1)^2}$$

$$= \frac{(e^x + 1)e^x - e^x(e^x + 0)}{(e^x + 1)^2}$$

$$= \frac{e^x(e^x + 1 - e^x)}{(e^x + 1)^2}$$

$$= \frac{e^x}{(e^x + 1)^2}$$

Exercise 9.2 | Q 1.5 | Page 122

Differentiate the following function w.r.t.x

x

 $\log x$

SOLUTION

Let
$$y = \frac{x}{\log x}$$

Differentiating w.r.t. x, we get

 $\frac{dy}{dx} = \frac{d}{dx} \bigg(\frac{x}{\log x} \bigg)$

$$= \frac{\log x \frac{d}{dx}(x) - x \frac{d}{dx}(\log x)}{(\log x)^2}$$
$$= \frac{\log x(1) - x(\frac{1}{x})}{(\log x)^2}$$
$$= \frac{\log x - 1}{(\log x)^2}$$

Exercise 9.2 | Q 1.6 | Page 122

Differentiate the following function w.r.t.x.

 2^x

 $\log x$

SOLUTION

Let y = $\frac{2^x}{\log x}$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{2^x}{\log x}\right)$$
$$= \frac{\log x \frac{d}{dx} (2^x) - 2^x \frac{d}{dx} (\log x)}{(\log x)^2}$$
$$= \frac{\log x (2^x \log 2) - 2^x \left(\frac{1}{x}\right)}{(\log x)^2}$$
$$= \frac{(2^x \log x \cdot \log 2) \left(-\frac{1}{x}\right)}{(\log x)^2}$$

Exercise 9.2 | Q 1.7 | Page 122

Differentiate the following function w.r.t.x

 $\frac{(2e^x-1)}{(2e^x+1)}$

SOLUTION

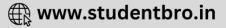
Let
$$y = \frac{2e^x - 1}{2e^x + 1}$$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(\frac{2e^x - 1}{2e^x + 1} \right) \\ &= \frac{(2e^x + 1)\frac{d}{dx}(2e^x - 1) - (2e^x - 1)\frac{d}{dx}(2e^x + 1)}{(2e^x + 1)^2} \\ &= \frac{(2e^x + 1)(2e^x) - (2e^x - 1)(2e^x)}{(2e^x + 1)^2} \\ &= \frac{2e^x(2e^x + 1 - 2e^x + 1)}{(2e^x + 1)^2} \\ &= \frac{2e^x(2)}{(2e^x + 1)^2} \\ &= \frac{4e^x}{(2e^x + 1)^2} \end{aligned}$$

Exercise 9.2 | Q 1.8 | Page 122

$\frac{\text{Differentiate the following function w.r.t.x}}{(x+1)(x-1)}$ $\frac{(e^x+1)}{(e^x+1)}$



Let y =
$$\frac{(x+1)(x-1)}{(e^x+1)}$$

 \therefore y = $\frac{x^2-1}{(e^x+1)}$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(\frac{x^2 - 1}{e^x + 1} \right) \\ &= \frac{(e^x + 1)\frac{d}{dx} (x^2 - 1) - (x^2 - 1)\frac{d}{dx} (e^x + 1)}{(e^x + 1)^2} \\ &= \frac{(x^x + 1)(2x) - (x^2 - 1)(e^x + 0)}{(e^x + 1)^2} \\ &= \frac{2xe^x + 2x - x^2e^x + e^x}{(e^x + 1)^2} \\ &= \frac{2xe^x + e^x - x^2e^x + 2x}{(e^x + 1)^2} \\ &= \frac{e^x (2x + 1 - x^2) + 2x}{(e^x + 1)^2} \end{aligned}$$

Exercise 9.2 | Q 2.01 | Page 122

Solve the following example:

The demand D for a price P is given as D = 27/P, find the rate of change of demand when price is 3.

Demand, D = $\frac{27}{P}$ Rate of change of demand = $\frac{dD}{dP}$ $=\frac{d}{dP}\left(\frac{27}{p}\right)$ $=27\frac{d}{d}P\left(\frac{1}{p}\right)$ $=27\frac{d}{dP}\left(\frac{1}{P}\right)$ $=27\frac{d}{dP}(P^{-1})$ $=27((-1)P^{-2})$ $=27\left(rac{-1}{p^2}
ight)=rac{-27}{p^2}$

When price P = 3, Rate of change of demand,

$$\left(rac{dD}{dP}
ight)_{p=3}=rac{-27}{\left(3
ight)^2}=-3$$

: When price is 3, Rate of change of demand is -3.

Exercise 9.2 | Q 2.02 | Page 122

Solve the following example:

🕀 www.studentbro.in

If for a commodity; the price-demand relation is given as D = $\frac{P+5}{P-1}$. Find the marginal demand when price is 2.

CLICK HERE

≫

Given, D = $\frac{P+5}{P-1}$ Marginal demand = $\frac{dD}{dP} = \frac{d}{dP} \left(\frac{P+5}{P-1}\right)$ = $\frac{(p-1)\frac{d}{dP}(p+5) - (p+5)\frac{d}{dP}(p-1)}{(P-1)^2}$ = $\frac{(p-1)(1+0) - (p+5)(1-0)}{(P-1)^2}$ = $\frac{P-1-P-5}{(P-1)^2}$ = $\frac{-6}{(P-1)^2}$ When P = 2, Marginal demand, $\left(\frac{dP}{dP}\right)_{P=2}$ = $\frac{-6}{(2-1)^2} = -6$

.: When price is 2, marginal demand is -6.

Exercise 9.2 | Q 2.03 | Page 122

Solve the following example:

The demand function of a commodity is given as $P = 20 + D - D^2$. Find the rate at which price is changing when demand is 3.

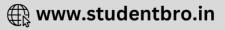
Given, P = 20 + D - D² Rate of change of price = $\frac{dP}{dD}$ = $\frac{d}{dD} (20 + D - D^2)$ = 0 + 1 - 2D = 1 - 2D Rate of change of price at D = 3 is $\left(\frac{dP}{dD}\right)_{D=3}$

- = 1 2(3) = 5
- \therefore Price is changing at a rate of -5 when demand is 3.

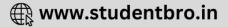
Exercise 9.2 | Q 2.04 | Page 122

Solve the following example:

If the total cost function is given by; $C = 5x^3 + 2x^2 + 7$; find the average cost and the marginal cost when x = 4.



Total cost function, $C = 5x^3 + 2x^2 + 7$ Average cost = $\frac{C}{r}$ $=\frac{5x^3+2x^2+7}{r}$ $= 5x^2 + 2x + \frac{7}{7}$ When x = 4, Average cost = $5(4)^2 + 2(4) + \frac{7}{4}$ $= 80 + 8 + \frac{7}{4}$ $=\frac{320+32+7}{4}$ $=\frac{359}{4}$ Marginal cost = $\frac{dC}{dr}$ $=\frac{d}{dx}\left(5x^3+2x^2+7\right)$ $=5\frac{d}{dx}(x^3)+2\frac{d}{dx}(x^2)+\frac{d}{dx}(7)$ $= 5(3x^2) + 2(2x) + 0$ $= 15x^2 + 4x$ When x = 4, Marginal cost = $\left(\frac{dC}{dx}\right)_{x=4}$



- = 15(4)² + 4(4) = 240 + 16
- = 256

: the average cost and marginal cost at x = 4 are $\frac{359}{4}$ and 256 respectively.

Exercise 9.2 | Q 2.05 | Page 122

Solve the following example:

The total cost function of producing n notebooks is given by C= $1500 - 75n + 2n^2 + n 3/5$.

Find the marginal cost at n = 10.

SOLUTION

Total cost function,

$$C = 1500 - 75n + 2n^{2} + \frac{n^{3}}{5}$$

Marginal Cost = $\frac{dC}{dn}$
= $\frac{d}{dn} \left(1500 - 75n + 2n^{2} + \frac{n^{3}}{5} \right)$
= $\frac{d}{dn} (1500) - 75 \frac{d}{dn} (n) + 2 \frac{d}{dn} (n^{2}) + \frac{1}{5} \frac{d}{dn} (n^{3})$
= $0 - 75(1) + 2(2n) + \frac{1}{5} (3n^{2})$
= $-75 + 4n + \frac{3n^{2}}{5}$
When n = 10,
Marginal cost

$$= \left(\frac{dC}{dn}\right)_{n=10} = -75 + 4(10) + \frac{3}{5}(10)^2$$
$$= -75 + 40 + 60$$
$$= 25$$

Exercise 9.2 | Q 2.06 | Page 123

Solve the following example:

The total cost of 't' toy cars is given by $C=5(2^t) + 17$. Find the marginal cost and average cost at t=3.

SOLUTION

Total cost of 't' toy cars, $C = 5(2^{t}) + 17$ Marginal Cost $= \frac{dC}{dt}$ $= \frac{d}{dt} [5(2^{t})17]$ $= 5\frac{d}{dt} (2^{t}) + \frac{d}{dt} (17)$ $= 5(2^{t} .log 2) + 0$ $= 5(2^{t} .log 2)$ When t = 3, Marginal cost $= \left(\frac{dC}{dt}\right)_{t=3}$ $= 5(2^{3} .log 2) = 40 log 2$ Average cost $= \frac{C}{t} = \frac{5(2)^{t} + 17}{t}$

$$=\frac{40+17}{3}=19$$

 \therefore at t = 3, Marginal cost is 40 log 2 and Average cost is 19.

Exercise 9.2 | Q 2.07 | Page 123

Solve the following example:

If for a commodity; the demand function is given by, D = $\sqrt{75 - 3P}$. find the marginal demand function when P = 5

SOLUTION

Demand function, D =
$$\sqrt{75 - 3P}$$

Now, Marginal demand = $\frac{dD}{dP}$
= $\frac{d}{dP} \left(\sqrt{75 - 3P}\right)$
= $\frac{1}{2\sqrt{75 - 3P}} \cdot \frac{d}{dP} (75 - 3P)$
= $\frac{1}{2\sqrt{75 - 3P}} \cdot (0 - 3 \times 1)$
= $\frac{-3}{2\sqrt{75 - 3P}}$
When P = 5,
Marginal demand = $\left(\frac{dD}{dP}\right)_{P=5}$
= $\frac{-3}{2\sqrt{75 - 3(5)}}$

$$= \frac{-3}{2\sqrt{60}}$$

= $\frac{-3}{4\sqrt{15}}$
∴ Marginal demand = $\frac{-3}{4\sqrt{15}}$ at P = 5.

Exercise 9.2 | Q 2.08 | Page 123

Solve the following example:

The total cost of producing x units is given by $C=10e^{2x}$, find its marginal cost and average cost when x = 2

SOLUTION

Total cost, C = $10e^{2x}$ Marginal cost = $\frac{dC}{dx}$ = $\frac{d}{dx}(10e^2x) = 10\frac{d}{dx}(e^2x)$ = $10.e^2x.\frac{d}{dx}(2x) = 10.e^2x.2(1)$ = $20e^{2x}$ When x = 2, Marginal cost = $\left(\frac{dC}{dx}\right)_{x=2}$ = $20e^4$ Average cost = $\frac{C}{x}$ = $\frac{10e^2x}{x}$

When x = 2 average cost = $\frac{10e^4}{2}$ = $5e^4$

:. When x = 2, marginal cost is $20e^4$ and average cost is $5e^4$.

Exercise 9.2 | Q 2.09 | Page 123

Solve the following example:

The demand function is given as $P = 175 + 9D + 25D^2$. Find the revenue, average revenue, and marginal revenue when demand is 10.

SOLUTION

Given, $P = 175 + 9D + 25D^2$

Total revenue, R = P.D

 $= (175 + 9D + 25D^2)D$

 $= 175D + 9D^2 + 25D^3$

Average revenue = $P = 175 + 9D + 25D^2$

Marginal revenue =
$$\frac{dR}{dD}$$

= $\frac{d}{dD} (175D + 9D^2 + 25D^3)$
= $175 \frac{d}{dD} (D) + 9 \frac{d}{d} D (D^2) + 25 \frac{d}{dD} (D^3)$
= $175(1) + 9(2D) + 25(3D^2)$
= $175 + 18D + 75D^2$
When D = 10,
Total revenue = $175(10) + 9(10)^2 + 25(10)^3$
= $1750 + 900 + 25000 = 27650$

Average revenue = $175 + 9(10) + 25(10)^2$

= 175 + 90 + 2500 = 2765Marginal revenue = $175 + 18(10) + 75(10)^2$ = 175 + 180 + 7500 = 7855 \therefore When Demand = 10, Total revenue = 27650, Average revenue = 2765Marginal revenue = 7855.

Exercise 9.2 | Q 2.1 | Page 123

Solve the following example:

The supply S for a commodity at price P is given by $S = P^2 + 9P - 2$. Find the marginal supply when price is 7.

SOLUTION

Given,
$$S = P2 + 9P - 2$$

Marginal supply $= \frac{dS}{dP}$
 $= \frac{d}{dP}(p^2 + 9P - 2)$
 $= \frac{d}{dP}(P^2) + 9\frac{d}{dP}(P) - \frac{d}{dP}(2)$
 $= 2P + 9(1) - 0$
 $= 2P + 9$
When P = 7,
Marginal supply $= \left(\frac{dS}{dP}\right)_{P=7}$
 $= 2(7) + 9$
 $= 14 + 9 = 23$
 \therefore Marginal supply is 23, at P = 7.

Exercise 9.2 | Q 2.11 | Page 123

Solve the following example:

The cost of producing x articles is given by $C = x^2 + 15x + 81$. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.

SOLUTION

Given, $\cot C = x^2 + 15x + 81$ Average cost = $rac{C}{r}=rac{x^2+15x+81}{r}$ $= x + 15 + \frac{81}{r}$ and Marginal cost = $\frac{dC}{dr}$ $=\frac{d}{dx}(x^2+15x+81)$ $= \frac{d}{dx}(x^2) + 15\frac{d}{dx}(x) + \frac{d}{dx}(81)$ = 2x + 15(1) + 0 = 2x + 15When x = 10, Marginal cost = $\left(\frac{dC}{dx}\right)$ = 2(10) + 15 = 35If marginal cost = average cost, then $2x + 15 = x + 15 + \frac{81}{7}$ $\therefore x = \frac{81}{r}$

$$\therefore x = 9 \dots [\because x > 0]$$

MISCELLANEOUS EXERCISE 9 [PAGES 123 - 124]

Miscellaneous Exercise 9 | Q 1.1 | Page 123

Differentiate the following function .w.r.t.x \boldsymbol{x}^{5}

SOLUTION

Let
$$y = x^5$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx}x^5 = 5x^4$$

Miscellaneous Exercise 9 | Q 1.2 | Page 123

Differentiate the following function w.r.t.x x^{-2}

SOLUTION

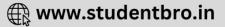
Let $y = x^{-2}$

Differentiating w.r.t. x, we get

$$rac{dy}{dx} = rac{d}{dx} ig(x^{-2} ig) = -2 x^{-3} = rac{-2}{x^3}$$

Miscellaneous Exercise 9 | Q 1.3 | Page 123

Differentiate the following functions w.r.t.x. \sqrt{x}



Let y = \sqrt{x}

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$$

Miscellaneous Exercise 9 | Q 1.4 | Page 123

Differentiate the following function w.r.t.x

 $x\sqrt{x}$

SOLUTION

Let y = $x\sqrt{x}$ $\therefore y = x^{rac{3}{2}}$

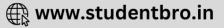
Differentiating w.r.t. x, we get

$$rac{dy}{dx} = rac{d}{dx} x^{rac{3}{2}} = rac{3}{2} x^{rac{1}{2}}$$

Miscellaneous Exercise 9 | Q 1.5 | Page 123

Differentiate the followingfunctions.w.r.t.x.

SOLUTION



Let y =
$$\frac{1}{\sqrt{x}}$$

 $\therefore y = x^{\frac{-1}{2}}$

Differentiating w.r.t. x, we get

$$rac{dy}{dx} = rac{-1}{2}x^{rac{-3}{2}} = rac{-1}{2x^{rac{3}{2}}}$$

Miscellaneous Exercise 9 | Q 1.6 | Page 123

Differentiate the following functions. w.r.t.x 7^{x}

SOLUTION

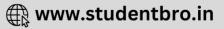
Let $y = 7^x$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx}7^x = 7^x \log 7$$

Miscellaneous Exercise 9 | Q 2.01 | Page 123

Find
$$rac{dy}{dx}$$
 if $y=x^2+rac{1}{x^2}$



$$y = x^2 + \frac{1}{x^2}$$
$$\therefore y = x^2 + x^{-2}$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^2 + x^{-2} \right)$$
$$= \frac{d}{dx} \left(x^2 \right) + \frac{d}{dx} \left(x^{-2} \right)$$
$$= 2x - 2x^{-3}$$
$$= 2x - \frac{2}{x^3}$$

Miscellaneous Exercise 9 | Q 2.02 | Page 123

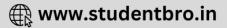
Find
$$rac{dy}{dx}$$
 if $y = \left(\sqrt{x}+1
ight)^2$

SOLUTION

$$egin{aligned} y &= ig(\sqrt{x}+1ig)^2 \ &\therefore y &= x+2\sqrt{x}+1 \end{aligned}$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(x + 2\sqrt{x} + 1 \right)$$
$$= \frac{d}{dx} \left(x \right) + 2\frac{d}{dx} \left(\sqrt{x} \right) + \frac{d}{dx} (1)$$



$$= 1 + 2\left(\frac{1}{2\sqrt{x}}\right) + 0$$
$$= \frac{dy}{dx} = 1 + \frac{1}{\sqrt{x}}$$

Miscellaneous Exercise 9 | Q 2.03 | Page 123

Find
$$rac{dy}{dx}$$
 if $y = \left(\sqrt{x} + rac{1}{\sqrt{x}}
ight)^2$

SOLUTION

$$y = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$$
$$\therefore y = x + 2 + \frac{1}{x}$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx}\left(x+2+\frac{1}{x}\right)$$
$$= \frac{d}{dx}\left(x\right) + \frac{d}{dx}\left(2\right) + \frac{d}{dx}\left(\frac{1}{x}\right)$$
$$= 1+0+\frac{d}{dx}\left(x^{-1}\right)$$
$$= 1+(-1)x^{-2}$$
$$= 1-\frac{1}{x^2}$$

Miscellaneous Exercise 9 | Q 2.04 | Page 123

Find
$$\frac{dy}{dx}$$
 if $y = x^3 - 2x^2 + \sqrt{x} + 1$

SOLUTION

$$y = x^3 - 2x^2 + \sqrt{x} + 1$$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(x^3 - 2x^2 + \sqrt{x} + 1 \right) \\ &= \frac{d}{dx} \left(x^3 \right) - 2 \frac{d}{dx} \left(x^2 \right) + \frac{d}{dx} \left(\sqrt{x} \right) + \frac{d}{dx} (1) \\ &= 3x^2 - 2(2x) + \frac{d}{dx} \left(x^{\frac{1}{2}} \right) + 0 \\ &= 3x^2 - 4x + \frac{1}{2} x^{\frac{1}{2} - 1} \\ &= 3x^2 - 4x + \frac{1}{2} x^{-\frac{1}{2}} \\ &\frac{dy}{dx} = 3x^2 - 4x + \frac{1}{2} \sqrt{x} \end{aligned}$$

Miscellaneous Exercise 9 | Q 2.05 | Page 123

Find
$$\frac{dy}{dx}$$
 if
y = x² + 2^x - 1

 $y = x^2 + 2^x - 1$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} (x^2 + 2^x - 1)$$
$$= \frac{d}{dx} (x^2) + \frac{d}{dx} (2^x) - \frac{d}{dx} (1)$$
$$= 2x + 2^x \log 2 - 0$$
$$= 2x + 2^x \log 2$$

Miscellaneous Exercise 9 | Q 2.06 | Page 123

Find
$$\frac{dy}{dx}$$
 if
y = (1 - x) (2 - x)

SOLUTION

$$y = (1 - x) (2 - x)$$
$$= 2 - 3x + x^{2}$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(2 - 3x + x^2\right)$$
$$= \frac{d}{dx} \left(2\right) - 3\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(x^2\right)$$
$$= 0 - 3(1) + 2x$$
$$= -3 + 2x$$

Miscellaneous Exercise 9 | Q 2.07 | Page 123

Find
$$\frac{dy}{dx}$$
 if
 $y = \frac{1+x}{2+x}$

SOLUTION

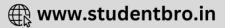
$$y = \frac{1+x}{2+x}$$

Differentiating w.r.t. x, we get

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left(\frac{1+x}{2+x} \right) \\ &= \frac{(2+x)\frac{d}{dx}(1+x) - (1+x)\frac{d}{dx}(2+x)}{(2+x)^2} \\ &= \frac{(2+x)(0+1) - (1+x)(0+1)}{(2+x)^2} \\ &\frac{dy}{dx} &= \frac{(2+x) - (1+x)}{(2+x)^2} \\ &= \frac{2+x - 1 - x}{(2+x)^2} \\ &= \frac{1}{(2+x)^2} \end{aligned}$$

Miscellaneous Exercise 9 | Q 2.08 | Page 123

Find
$$\frac{dy}{dx}$$
 if
 $y = \frac{(\log x + 1)}{x}$



 $y=\frac{(\log x+1)}{x}$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{\log x + 1}{x} \right]$$

$$\frac{x \frac{d}{dx} (\log x + 1) - (\log x + 1) \frac{d}{dx} (x)}{x^2}$$

$$\frac{x \left(\frac{1}{x} + 0\right) - (\log x + 1)(1)}{x^2}$$

$$= \frac{1 - \log x - 1}{x^2}$$

$$= \frac{-\log x}{x^2}$$

Miscellaneous Exercise 9 | Q 2.09 | Page 123

Find
$$\frac{dy}{dx}_{e^x}$$
 if
y = $\frac{1}{\log x}$

SOLUTION

$$y = \frac{e^x}{\log x}$$

Differentiating w.r.t. x, we get

$$rac{dy}{dx} = rac{d}{dx} igg(rac{e^x}{\log x} igg)$$

$$= \frac{(\log x) \frac{d}{dx} (e^x) - (e^x) \frac{d}{dx} (\log x)}{(\log x)^2}$$
$$= \frac{(\log x) e^x - e^x (\frac{1}{x})}{(\log x)^2}$$
$$= \frac{e^x (\log x - \frac{1}{x})}{(\log x)^2}$$

Miscellaneous Exercise 9 | Q 2.1 | Page 123

Find
$$\frac{dy}{dx}$$
 if
y = x log x (x² + 1)

SOLUTION

 $y = x \log x (x^2 + 1)$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{d}{dx}(x)(\log x)(x^2 + 1)$$

$$(x)(\log x)\frac{d}{dx}(x^2 + 1) - (x^2 + 1)\frac{d}{dx}((x)(\log x))$$

$$= (x\log x)(2x + 0) + (x^2 + 1)\left[x\frac{d}{dx}(\log x) + (\log x)\frac{d}{dx}(x)\right]$$

$$= 2x^2\log x + (x^2 + 1)\left[x \times \frac{1}{x} + (\log x)(1)\right]$$

$$= 2x^2\log x + (x^2 + 1)(1 + \log x)$$

$$= 2x^2\log x + (x^2 + 1) + (x^2 + 1)\log x$$

Miscellaneous Exercise 9 | Q 3.01 | Page 124 Solve the following.

Get More Learning Materials Here : 📕

Regional www.studentbro.in

The relation between price (P) and demand (D) of a cup of Tea is given by D = 12/P. Find the rate at which the demand changes when the price is Rs. 2/- Interpret the result.

SOLUTION

Demand, D =
$$\frac{12}{P}$$

Rate of change of demand = $\frac{dD}{dP}$
= $\frac{d}{dP} \left(\frac{12}{P}\right)$
= $12 \frac{d}{dP} \left(P^{-1}\right) - 12\left((-1)P^{-2}\right)$
= $12 \left(\frac{-1}{P^2}\right) = \frac{-12}{P^2}$

When price P = 2,

Rate of change of demand, $\left(rac{dD}{dP}
ight)_{P=2} = rac{-12}{\left(2
ight)^2} = -3$

: When price is 2, Rate of change of demand is -3

Here, rate of change of demand is negative

∴ demand would fall when the price becomes ₹ 2.

Miscellaneous Exercise 9 | Q 3.02 | Page 124

Solve the following.

The demand (D) of biscuits at price P is given by $D = 64/P^3$, find the marginal demand when price is Rs. 4/-.

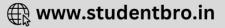
Given demand D = $\frac{64}{P^3}$ Now, marginal demand = $\frac{dD}{dP}$ $=\frac{d}{dP}\left(\frac{64}{p^3}\right)$ $= 64 \frac{d}{dP} (p^{-3})$ = 64 (- 3) P⁻⁴ $=\frac{-192}{p^4}$ When P = 4Marginal demand = $\left(\frac{dD}{dP}\right)_{n=4}$ $=\frac{-192}{(4)^4}$ $=\frac{-192}{256}$ $=\frac{-3}{4}$

Miscellaneous Exercise 9 | Q 3.03 | Page 124

Solve the following:

The supply S of electric bulbs at price P is given by $S = 2P^3 + 5$. Find the marginal supply when the price is Rs. 5/- Interpret the result.

SOLUTION



Given, supply $S = 2p^3 + 5$ Now, marginal supply $= \frac{dS}{dp}$ $= \frac{d}{dp} (2p^3 + 5)$ $= 2\frac{d}{dp} (p^3) + \frac{d}{dp} (5)$ $= 2(3p^2) + 0$ $= 6p^2$ \therefore When p = 5Marginal supply $= \left(\frac{dS}{dp}\right)_{p=5}$

 $=6(5)^2=150$

Here, the rate of change of supply with respect to the price is positive which indicates that the supply increases.

Miscellaneous Exercise 9 | Q 3.04 | Page 124

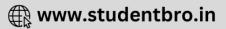
Solve the following:

The marginal cost of producing x items is given by $C = x^2 + 4x + 4$. Find the average cost and the marginal cost. What is the marginal cost when x = 7.

SOLUTION

Total cost, C =
$$x^2 + 4x + 4$$

Now, Average cost = $\frac{c}{x} = \frac{x^2 + 4x + 4}{x}$
= $x+4+\frac{4}{x}$
and Marginal cost = $\frac{dc}{dx}\frac{d}{dx}(x^2+4x+4)$



$$= \frac{d}{dx} (x^2) + 4 \frac{d}{dx} (x) + \frac{d}{dx} (4)$$

$$= 2x + 4(1) + 0$$

$$= 2x + 4$$

$$\therefore \text{ When } x = 7,$$
Marginal cost
$$= \left(\frac{dC}{dx}\right)_{x=7}$$

$$= 2(7) + 4$$

$$= 14 + 4$$

$$= 18$$

Miscellaneous Exercise 9 | Q 3.05 | Page 124

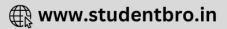
Solve the following:

The Demand D for a price P is given as D = 27/P, Find the rate of change of demand when the price is Rs. 3/-.

SOLUTION

Demand, D =
$$\frac{27}{P}$$

Rate of change of demand = $\frac{dD}{dP}$
= $\frac{d}{dP} \left(\frac{27}{P}\right)$
= $27 \frac{d}{dP} \left(\frac{1}{P}\right)$
= $27 \frac{d}{dP} \left(p^{-1}\right)$
= $27((-1)p^{-2})$



$$=27\left(\frac{-1}{p^2}\right)=\frac{-27}{p^2}$$

When price P = 3,

Rate of change of demand,

$$\left(rac{dD}{dP}
ight)_{p=3}=rac{-27}{\left(3
ight)^2}=-3$$

 \therefore When price is 3, Rate of change of demand is -3.

Miscellaneous Exercise 9 | Q 3.06 | Page 124

Solve the following.

If for a commodity; the price demand relation is given be D = $\left(\frac{P+5}{P-1}\right)$. Find the marginal demand when price is Rs. 2/-.

SOLUTION

Given, D =
$$\left(\frac{P+5}{P-1}\right)$$

Marginal demand = $\left(\frac{dD}{dP}\right) = \frac{d}{dP}\left(\frac{P+5}{P-1}\right)$
= $\frac{(P-1)\frac{d}{dP}(P+5) - (P+5)\frac{d}{dP}(P-1)}{(P-1)^2}$
= $\frac{(P-1)(1+0) - (P+5)(1-0)}{(P-1)^2}$
= $\frac{P-1-P-5}{(P-1)^2}$
= $\frac{-6}{(P-1)^2}$

When P = 2,

Marginal demand, $\left(\frac{dP}{dP}\right)_{P=2}$ = $\frac{-6}{(2-1)^2}$ = -6

: When price is 2, marginal demand is -6.

Miscellaneous Exercise 9 | Q 3.07 | Page 124

Solve the following.

The price function P of a commodity is given as $P = 20 + D - D^2$ where D is demand. Find the rate at which price (P) is changing when demand D = 3.

SOLUTION

Given, $P = 20 + D - D^2$

Rate of change of price = $\frac{dP}{dP}$

$$=\frac{d}{dD}\left(20+D-D^2\right)$$

Rate of change of price at D = 3 is

$$\left(\frac{dP}{dD}\right)_{D=3} = 1 - 2(3) = -5$$

 \therefore Price is changing at a rate of -5 when demand is 3.

Miscellaneous Exercise 9 | Q 3.08 | Page 124

Solve the following.

If the total cost function is given by $C = 5x^3 + 2x^2 + 1$; Find the average cost and the marginal cost when x = 4.

Total cost function C = $5x^3 + 2x^2 + 1$ Average cost = $\frac{C}{r}$ $=\frac{5x^3+2x^2+1}{r}$ $= 5x^2 + 2x + \frac{1}{2}$ When x = 4, Average cost = $5(4)^2 + 2(4) + \frac{1}{4}$ $= 80 + 8 + \frac{1}{4}$ $=\frac{320+32+1}{4}$ $=\frac{353}{4}$ Marginal cost = $\frac{dC}{dx}$ $=\frac{d}{dx}\left(5x^3+2x^2+1\right)$ $=5\frac{d}{dx}(x^{3})+2\frac{d}{dx}(x^{2})+\frac{d}{dx}(1)$ $=5(3x^{2}) + 2(2x) + 0$ $= 15x^2 + 4x$ When x = 4, marginal cost = $\left(\frac{dC}{dx}\right)$. $= 15(4)^2 + 4(4)$ = 240 + 16

= 256

 \therefore The average cost and marginal cost at x = 4 are $\frac{353}{4}$ and 256 respectively.

Miscellaneous Exercise 9 | Q 3.09 | Page 124

Solve the following.

The supply S for a commodity at price P is given by $S = P^2 + 9P - 2$. Find the marginal supply when price Rs. 7/-.

SOLUTION

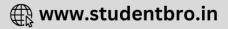
Given, S = P² + 9P -2 Marginal supply = $\frac{dS}{dP}$ = $\frac{d}{dP}(P^2 + 9P - 2)$ = $\frac{d}{dP}(P^2) + 9\frac{d}{dP}(P) - \frac{d}{dP}(2)$ = 2P + 9(1)-0 = 2P + 9 When P = 7, Marginal supply = $\left(\frac{dS}{dP}\right)_{P=7}$ = 2(7) + 9 = 14 + 9 = 23

 \therefore Marginal supply is 23, at P = 7.

Miscellaneous Exercise 9 | Q 3.1 | Page 124

Solve the following.

The cost of producing x articles is given by $C = x^2 + 15x + 81$. Find the average cost and marginal cost functions. Find the marginal cost when x = 10. Find x for which the marginal cost equals the average cost.



Given, $\cot C = x^2 + 15x + 81$ Average $\cot C = \frac{C}{x} = \frac{x^2 + 15x + 81}{x}$ $= x + 15 + \frac{81}{x}$ and Marginal $\cot C = \frac{dC}{dx}$ $= \frac{d}{dx} (x^2 + 15x + 81)$ $= \frac{d}{dx} (x^2) + 15 \frac{d}{dx} (x) + \frac{d}{dx} (81)$ = 2x + 15(1) + 0 = 2x + 15When x = 10, Marginal $\cot C = \left(\frac{dC}{dx}\right)_{x=10}$ = 2(10) + 15 = 35If marginal $\cot C = average \cot C$, then

$$2x + 15 = x + 15 + \frac{81}{x}$$
$$\therefore x = \frac{81}{x}$$
$$\therefore x^{2} = 81$$
$$\therefore x = 9 \dots [\because x > 0]$$

